
Introduction to Stata Programming

Gabriel Rossman
rossman@soc.ucla.edu

November 13, 2009

Serious work in Stata is done entirely in do-files, but you may notice that
your do-files get very repetitive. You may find yourself applying a series of very
similar commands over and over again. This is tedious but the real problem
with it is that if you need to change it, you’ll have to change it in each instance.
Programming will let you write a simple construct then see it repeated multiple
times and any changes will propagate to each of the instances. Likewise you
may want to have one command feed into another, which is impossible to do in
a do-file without programming. All of this will help you write do-files that are
concise, comprehensible, replicable, and can be easily modified. This is written
with Stata in mind and using Stata terminology but the principles (if not the
terminology) are similar in other scripting languages including both statistical
languages like R and SAS and general purpose languages like bash and perl.

This lecture is loosely based on the CCPR programming tutorial by Courtney
Engel. I also suggest reading Long, J Scott. 2009. The Workflow of Data
Analysis Using Stata. College Station, TX: Stata Press.

Directory Structure

The first step to a project is having a good directory structure. I like to keep
mine in the Documents directory of my hard drive (“~/Documents” in Mac/Unix
or “My Documents” in Windows). Another way to do it is to keep it on a USB
drive or server directory.

Within the directory are three main subdirectories: lit, stata, and writeup.
Lit is just a place to put my pdfs of things I might like to cite. Stata is where
I put my do-files, log-files, and subdirectories for data and output. Writeup is
where I put my Word or LATEX/Lyx files containing the write-up. Note that
both “stata” and “writeup” contain “archive” subdirectories, which is where I
hide old versions of my do-files and manuscripts (see “versioning” below). Also
note that symbolic links (aka, “aliases” or “shortcuts”) can be useful, for instance
if two projects have overlapping lit reviews and/or datasets. Likewise, you can
use symbolic links so that your “rawdata” directory is really a shared directory
on a server.

~/Documents/project

1

http://ccpr.ucla.edu/Computing_Services/Tutorial/Workshops/Programming_10.12.07.ppt
http://www.indiana.edu/~jslsoc/web_workflow/wf_home.htm
http://www.indiana.edu/~jslsoc/web_workflow/wf_home.htm

/lit
/stata

/archive
/cleandata
/graphics
/rawdata
/tables

/writeup
/archive

The “stata” directory has several subdirectories. First, note that there are two
data directories, one for raw and one for clean data. Your raw data should
always be treated as read-only. You should modify the raw data only using
do-files (rather than interactively) and you should not overwrite the raw file
but instead put the modified data in the “cleandata” directory. The “graphics”
directory is for saving graphics using the command “graph export”.1 The “tables”
directory is for saving tables with commands like “estout”. Note that if you’re
using LATEX/Lyx you can have your write-up automatically include the most
current version of the tables and graphics by targeting their locations.

That’s my way, but Scott Long suggests an alternative directory structure
oriented around the concept of “posting” where one distinguishes between drafts
that are just for you and you’re still working on and scripts that are ready to be
permanently fixed and circulated with your collaborators. In Long’s scheme if
you want to change a posted script you write a new version with its own version
number. Long’s approach is very appropriate for a large-scale collaboration with
interdependent components, which is why it is used by software developers and
open source projects.

Versioning

It’s a good idea to have one current version of your scripts and your write-up but
also to keep backups of old versions. This lets you replicate results based on older
versions, revert any mistakes you make in new versions, and freely experiment
knowing that you can always retrieve old code from the archival versions. I
usually don’t bother keeping old versions of my clean data, tables, and graphics
because I can always replicate them from scratch with the appropriate do-file
backup.

I like to call my current version something simple like ~/project/stata/recode.do.
I put my old version in the folder archive and add the date to the name, e.g.,
~/project/stata/archive/recode20091101.do. Here’s a Unix shell script that will

1Note that only Stata can read the “.gph” format so you want “graph export” not “graph

save”. The format “.png” is good for display on the screen and casual use, but you want

“.eps” for printing and typesetting. To get pdf on Mac/Unix get my ado file with “ssc install

graphexportpdf”. To do it on Windows first export as eps then use ghostscript or distiller.

2

do this for you. In Snow Leopard you can use Automator to save this script as
a right-clickable Finder service.2

#bin/bash
TIMESTAMP=‘date ’+%Y%m%d’‘
for f in "$@"
do
EXTENSION=${f##*.}
FILENAME=‘basename $f | sed ’s/\(.*\)\..*/\1/’‘
DIRPATH=‘dirname $f‘
cp "$f" "$DIRPATH/archive/$FILENAME$TIMESTAMP.$EXTENSION"

done

This works pretty well for a solo project or a collaboration with a clear division
of labor, but for a complex collaboration where you and your colleagues are
working on the same files you might want to try version control software like Git
or Subversion which provide similar functionality to the “track changes” feature
in Word. These programs will work with any text-based format, including Stata
do-files.

Header

A do-file (or any script) should begin with a header consisting of a series of
comments saying who wrote the script, what it’s for, what other script should
have been run before it, etc. Stata comments begin with “*” but most languages
use “#”. In addition to the header comments, you should sprinkle comments
throughout the do-file to clarify the purpose of the code.

It’s also a good idea to have your housekeeping commands (i.e., “set” and
“log”) right up-front.

I also like to have two sets of global macros in my header, first the directories
and second a set of switches that describe different ideas (e.g., log all the inde-
pendent variables). The reason for doing both of these things is that it lets me
easily change things without searching through the code to find all the places
that they occur. For instance, by putting the directories in global macros in the
header, I can easily migrate the project to a different computer. Likewise, I can
use the switches to only run parts of the code that I’ve recently modified, this
can save a lot of time but can also be problematic if the skipped code affects
how the executed code would have run.

Here’s the beginning of the do-file that makes all the graphs in my book
project

global bookdir "~/Documents/book"
global images "~/Documents/book/images"

2Like any shell script, you can make it a terminal command in Mac or Linux by saving it

as a file, using chmod to make the file executable, and adding an alias targetting the file to

~/.bashrc.

3

global payola "~/Documents/Sjt/payola/"
global dixiedata
"~/Documents/mediacongl/dixiechicks/daily_mediabase"
global sh_parentpath "~/Documents/Sjt/songhistoryfiles_mjk082708"
global survey "~/Documents/Sjt/radio/survey"
global humpsdata "$bookdir/stata/myhumpsweekly"

capture log close
log using $bookdir/stata/graph.log, replace

*switches -- chapters
global ch2 0
global ch3 0
global ch4 0
global ch5 1

*switches
*shared frailty analysis
global earlywin 60 /*how far ahead of p05event may adds come*/
global iterations 25 /*how many iterations can each MLE run?*/
global frailtysims 100 /*how many random shuffles of each song*/

Macros

In Stata a macro is something held in memory aside from the main dataset.3 The
concept is similar to a “variable” in Unix. Stata assigns some macros automati-
cally and others can be assigned by the programmer. However the programmer
can still read the ones Stata assigns automatically.

There are two basic types of macros, “locals” and “globals.” A local is shown
by left and right apostrophes (on the keyboard they are below the ~ and the “
respectively). A global is shown by $, just like a Unix variable. The difference
is that globals are always accessible whereas locals are only accessible at that
point or lower in the programming hierarchy. (The distinction will make sense
when we get to loops). It’s a good idea to use locals within loop constructs and
to use globals for issues that apply to the entire script, such as the directory
map.

For instance, in the code excerpt above I called the main project directory
“$bookdir”, a global. If I wanted it to be a local I would have assigned and
called it like so:

local bookdir "~/Documents/book"
cd ‘bookdir’

3Don’t think of this as being at all analogous to what Microsoft Office calls a “macro.”

Microsoft macros are more analogous to what Stata calls a “program” and most languages call

“subroutines.”

4

I also like to use macros to define lists of variables that I tend to use together.
This is extremely useful when creating nested regression models (e.g., model 1
is controls, model two is controls plus human capital, model three is controls
plus human capital and networks) because changes propogate. For instance if
you want to change one of the controls you only need to do it in one place.

global controls
"FPY00 g_drama g_comedy g_biography major castsize date female"
global hc "pact05 pact20 pactup pAnom"
global team "OTH_pAnom0 pDnom0 pWnom0"
global re_j ", re i(filmn)"

eststo clear
eststo: xtlogit actor_nom $controls $re_j
eststo: xtlogit actor_nom $controls $hc $re_j
eststo: xtlogit actor_nom $controls $hc centrality $re_j
eststo: xtlogit actor_nom $controls $hc centrality $team $re_j
esttab using $tabledir/table3_$vdata.txt , se b(3) se(3) scalars(ll rho) /*
/ nodepvars nomtitles label title(Table 3: LOGISTIC REGRESSION MODELS /
*/ OF ACADEMY AWARD NOMINATIONS. 1936-2005) replace fixed

eststo clear

Another application for macros is switches. I like to rely on the “if” syntax to
only execute a piece of code if a particular global is specified. In the example
above this corresponds to graphs by chapter. Here’s a simplified example:

if $ch2==1 {

use $bookdir/stata/cleandata/music.dta, clear
histogram radiostations
cd $images
graphexportpdf radiostations

}

This code will only run if the header defines $ch2 as 1.
Furthermore, the “program” and “loop” syntaxes rely heavily on local macros.
Macros are a very important way to talk to Stata and to program Stata

so the output of one command feeds the arguments of another command. The
three commands that show you what macros Stata has generated automatically
are:

creturn list
return list
ereturn list

The first of these, creturn, shows you system settings. Most of the creturn values
are preferences that can be changed with the “set” command. For instance, this
code checks the memory allocation and if it is less that 100 mb, sets it to 100
mb.

5

if ‘c(memory)’<1.049e+08 {

set mem 100m

}

Others of the creturn values can’t be changed but you can still use them to feed
into the program. Here’s an example where a program will create a pdf on a
Mac but eps on anything else:4

if "‘c(os)’"=="MacOSX" {

graph export mygraph.pdf, replace

}
else {

graph export mygraph.eps, replace

}

Return and ereturn macros are produced by commands and only last until you
issue another similar command (which will overwrite them). One of my favorite
applications of this is to use “summarize” then use some of the return macros to
feed into the next command. For instance, this code uses “summarize” to learn
the range of a variable then uses return macros to adjust the graph that follows
so it has a nice number of tick marks and labeled points.

sum date
local mindate=‘r(min)’
local maxdate=‘r(max)’
local interval=(‘maxdate’-‘mindate’)/10
local interval=round(‘interval’,7)
twoway (line x date) , /*
*/xmtick(‘mindate’(7)‘maxdate’) xlabel(‘mindate’(‘interval’)‘maxdate’)

A more complicated type of macro is the matrix, which is a little table. Cells
in the matrix are identified as “matrixname[row,column]”. You can use matrices
to record things too complicated to fit in a local, but one of the most obvious
uses is retrun matrices. Most Stata commands that give output as some kind
of table will allow you to return the table. The option “matcell(name)” lets you
save the results of a tabulate command and you can use the saved matrix to do
things like calculate odds-ratios.

tab candidat inc [fweight= pop], matcell(elec)
disp "A wealthy person was about " /*
*/ round((elec[2,5]*elec[1,1])/(elec[1,5]*elec[2,1])) /*
*/ " times more likely to choose Bush over Clinton than a very poor person"

4Graph exporting is one of very view things in Stata where the operating system matters.

You should also use the if "‘c(os)’" construct if you are making use of the “shell” command

and expect it to run on different systems.

6

Likewise regression commands return an ephemeral matrix called “e(b)”. You
can copy e(b), and having copied it, manipulate it.

sysuse auto, clear
reg mpg foreign
matrix betas = e(b)
local foreignadvantage = round(betas[1,1])
disp "in 1978, foreign cars got about ‘foreignadvantage’ more miles to the gallon than domestics."

Functions

Stata has a variety of functions that will process an argument enclosed in paren-
theses. For instance the function “log()” returns the natural logarithm of what-
ever is in the parentheses.

gen income_ln=log(income)

Although functions are often used for transforming variables they are much
more versatile and can also be used for things like processing macros, complex
expressions, and even other functions. That is, you can have nested functions
like “log(real(income))” which will take a variable called income (but coded as
a string), turn it into a numeric, and then take the log.

The simplest Stata functions are random number functions, most of which
start with the letter “r.” These can be very useful for sampling, simulations,
shuffling the data, etc.

Many of the functions are most useful for hard-core programmers, but the
math functions, string functions, and date functions are very useful even for
very simple do-files. The aforementioned “log()” is one of the most useful math
functions and Stata has functions for most of the other things you learned
in elementary and high school math, especially anything having to do with
rounding, trig, or logarithms/exponentiation. If you understand the math, the
code is straightforward.

String functions are for cleaning text. They are a little harder to use than
the math functions but they are invaluable for cleaning dirty data like IMDB.
Although sometimes it’s best to give up and use perl, many things can be done
very well using Stata’s extensive library of string functions. There are a lot
of specialized but fairly straightforward functions like “trim()” and “subinstr()”
but Stata also has several functions for full-blown regular expressions, which are
very flexible but have a learning curve. By using regular expressions you can
do things like taking the “city, state” line of an address and splitting it into one
“city” component and another “state” component.

The date functions have two purposes. First, they can take dates coded as
strings (e.g., “November 5, 1985”) and convert them to a number of time incre-
ments since January 1, 1960. Stata can count time out in milliseconds (%tc),
days (%td), weeks (%tw), months (%tw), quarters (%tq), half-years (%th), or

7

any arbitrary increment (%tg).5 Of these, %td is the most popular. Second, the
date functions can convert one date format to another or extract a component
(e.g., day of the week) from a date. For instance, my radio data comes with a
variable called “firstplayed” that is a string formatted as “MM/DD/YYYY”. To
get this into Stata and stored as a date (“fpdate”) and a date rounded to the
nearest Friday (“fp_w”), I use these commands:6

gen fpdate=date(firstplayed,"MDY")
format fpdate %d
gen int fp1=fpdate/7
gen fp_w=fp1*7
format fp_w %d

Loops

Loops execute some commands several times based on a set of values in a macro.
The two basic commands are foreach, which runs the loop over a series of words
(separated by spaces) and forvalues, which runs over a number series. These
are useful for all sorts of repetitive tasks. Because you only write the command
once then loop it you both save time and avoid inconsistency.

For instance, the Stata standard for dummies is that 0 means no and 1
means yes, but the Survey of Public Participation in the Arts codes “no” as “2.”
Here’s a loop that corrects several of the dummies (and renames them to avoid
confusion with the original versions):

lab def yesno 0 "N" 1 "Y"
foreach var in PEX4A PEX4B PEX5 PEQ1A PEQ2A PEQ3A PEQ4A {

recode ‘var’ 2=0 1=1 .=.
lab val ‘var’ yesno
ren ‘var’ ‘var’r

}

First note the syntax of the “foreach” command itself (the second line). The
syntax goes “foreach local in list”. So “var” is a local that draws values from “list,”
one at a time. Next note that foreach ends with an open curly bracket and is
followed by several indented commands. This indentation is called whitespace.
Like most languages, Stata doesn’t need whitespace but it’s considered good
programming practice as (much like syntax highlighting) it helps you understand
the script and immediately see the logical structure. Finally the loop ends with
a closed curly bracket. When executed the loop will run once treating the local
“var” as meaning “PEX4A” then again treating it as “PEX4B”, etc.

5Unix time is measured in seconds and starts 1/1/1970 so Unix Time is approximately

(%tc*1000)+(86400*3650).
6I keep fp_w as %td instead of %tw because 365 days doesn’t divide evenly by 7 days a

week and I don’t like how %tw handles the odd day.

8

http://www.cpanda.org/cpanda/getDDIsummary.xq?studyID=a00249

We can also use a local as the list. For instance imagine that we wanted
to import all the csv files in “stata/rawdata” and save them as Stata files in
“stata/cleandata.” We first get a local listing all the csv files (which frankly is
harder than it should be) and then use that local to run the loop.

cd rawdata
local csvlist : dir . files "*.csv", respectcase
foreach file of local csvlist {

insheet using ‘file’, clear
save ../cleandata/‘file’.dta, replace

}

Forvalues has a similar syntax except that list is replaced by a series defined
as local=min/max or local=min(interval)max. In the former, the interval is
assumed to be one.

forvalues count=1/10 {

disp ‘count’

}
forvalues countbytwos=2(2)10 {

disp ‘countbytwos’

}

Program and Arguments

The “program” syntax in Stata lets you write your own commands. You can put
them at the beginning of a do-file for later use or you can save them as “ado”
files to always have access to them. Of course, you can also share ado files. Even
though the core of Stata is proprietary, the ease of writing and sharing ado files
gives it a quasi-open source feel and many of the most popular commands (e.g.,
estout and gllamm) are ado files. These user-written ado-files don’t come on
the Stata cd, but you can look for and install useful ones with the commands
“ssc” and “findit.”

When you write a program, it takes as an argument whatever follows the
name of the program. By default, this argument is just a series of local macros
called ‘1’, ‘2’, ‘3’, etc., but you can use the “syntax” and “token” commands to
help you parse the argument in complex ways. For simple commands (espe-
cially ones that are just for your own use) it is often good enough to just use
the default behavior. For instance, I wrote a program for use in writing my
book called “songgraph_all” that shows the cumulative distribution function of
radio stations playing the pop song given in the argument. I also have a more
complicated command called “graphlines_group” that will break this out out
by format or owner within format. Here’s an example of the syntax for the two
commands which relies simply on word order:

9

songgraph_all "RIHANNA" "Umbrella fJayZ"
songgraph_all "RIHANNA" "Umbrella fJayZ" f "format" "Top_40"
graphlines_group "RIHANNA" "Umbrella fJayZ" f format
graphlines_group "RIHANNA" "Umbrella fJayZ" fo owner f format Top_40 "% of Stations Playing"

Here’s the code for the “songgraph_all” command. Note that one program can
invoke another program and also that programs should use whitespace to show
structure:

capture program drop songgraph_all
program define songgraph_all
local artist ‘1’
local song ‘2’
local suffix ‘3’ /*file suffix to use */
local subsample2 ‘4’ /*variable to restrict sample to, eg format*/
local subsample2x ‘5’ /*subsample2 value (eg, Top 40)*/
disp "‘artist’ ‘song’ ‘suffix’ ‘subsample2’ ‘subsample2x’"
if "‘suffix’"=="" {
local suffix="all"

}
set more off

disp "‘suffix’"
use final_‘suffix’.dta, clear
quietly keep if artist=="‘artist’" & song=="‘song’"
if "‘subsample2x’"~="" {
quietly keep if ‘subsample2’=="‘subsample2x’"

}
quietly drop if Nt_inc_p>98
quietly sum date
local mindate=‘r(min)’
local maxdate=‘r(max)’
local interval=(‘maxdate’-‘mindate’)/10
local interval=round(‘interval’,7)
twoway (area Nt_inc date, lwidth(medthick) fcolor(ltbluishgray)) , /*
/ xtitle("") xmtick(‘mindate’(7)‘maxdate’) xlabel(‘mindate’(‘interval’)‘maxdate’, /
/ labsize(vsmall) angle(forty_five) format(%tdMon_dd,_CCYY)) /
/ ytitle(Number of Stations Playing) ytitle(, size(small)) /
*/ ylabel(, labsize(small) format(%9.2g))

nospaces "‘artist’"
local artist="$x"
nospaces "‘song’"
local song="$x"
if "‘subsample2x’"=="" {
graphexportpdf ‘artist’_‘song’, dropeps
shell mv "‘artist’_‘song’.pdf" "$images"

10

}
else {
nospaces "‘subsample2x’"
local subsample2x="$x"
graphexportpdf ‘artist’_‘song’_‘subsample2x’, dropeps
shell mv "‘artist’_‘song’_‘subsample2x’.pdf" "$images"

}
end

Piping

Increasingly one of my favorite commands is “shell” which gives you direct access
to the command-line of your operating system.7 This lets you access many other
programs from directly within Stata, which is useful since versatile as Stata is,
some things are difficult or impossible to do in Stata. This has some applications
in Windows, but really becomes powerful in Unix (i.e., Mac, Linux, etc.) as
your average Unix installation comes standard with or can easily install many
powerful tools that can be run directly from the command-line.8 By using the
“shell” command you can let Stata do what it does best, then “pipe” problems
to tools that are better suited to handle them. Alternately, instead of starting
with a Stata do-file and reaching other programs with “shell” you can have a
“bash” or “make” script that invokes many programs, including Stata.

The big advantage to piping is that it lets you script things that are difficult
or impossible in Stata. As always, the advantage of scripting is that it makes
it easier to repeat the operation (usually with slight variations). The two big
downsides are a) your do-files won’t be portable to computers that use a different
operating system or have a different panopoly of tools and b) the different
languages each have slightly different syntax so there’s a learning curve.

The most basic thing to do is to just use the basic command line tools. For
instance, suppose I have a bunch of files organized by song, and I’m interested
in finding all the song files that mention a particlar radio station, say KIIS-
FM. I can run the following command that finds all the song files in my song
directory (or its subdirectories) and puts the names of these files in a text file
called “kiis.txt”

shell grep -l -r ’KIIS’ ~/Documents/book/stata/rawsongs/ > kiis.txt
7Note that an important limitation of “shell” is that unlike a true terminal or shell script,

the Stata “shell” command has no concept of a session and doesn’t load preference files like

~/.bashrc. If you need a session, have Stata launch an executable shell script rather than

directly sending the shell one command at a time.
8Windows also has a shell but traditionally it’s not as powerful as Unix. Beginning with

Vista (optional) and Windows 7 (standard), Windows now includes the “PowerShell” tool

which is similar to Unix but not a true POSIX standard bash shell like Mac/Linux. The

upshot is that Stata “shell” commands and entire bash scripts written for Mac/Linux will

probably require some debugging (but not a 100% rewrite) before they run on Windows

PowerShell.

11

http://polsci.wordpress.com/2008/03/20/how-stata-and-a-makefile-can-make-your-day/

By extension, I could then write a program around this shell command that
will let me query station data from my song files (or vice versa). You could
do something similar to see what saved news or blog stories contain a certain
keyword.

More broadly, versatile as Stata is at data management, statistical analysis,
and graphing, it can’t do everything. For instance Stata is very picky about how
text files are formatted and it’s almost impossible to get Stata to do things like
read field-tagged data (e.g., BibTex, IMDB). Likewise, you might be interested
in treating header information from a bunch of scraped websites as a dataset.
Rather than spend days doing it manually or drive yourself crazy getting Stata
to do it, you’re probably best off using perl to do the bulk of the work then
insheeting the clean output into Stata.

Perl and Stata are both inspired by C, so once you get comfortable with
Stata (especially the programming constructs) you should find learning perl
reasonably easy. I highly recommend the online course notes and exercises
“Unix and Perl Primer for Biologists.” They assume no prior familiarity with
programming or Unix and although the examples involve genetics, it’s well-
suited for social scientists as, like us, biologists are not computer scientists but
are reasonably technically competent and they often deal with large text based
data sets. The course should be useful to any social scientist who deals with large
dirty datasets, in other words, basically anyone who is a quant but doesn’t just
download clean ICPSR or Census data. This is especially relevant for anyone
who wants to scrape data off the web, use IMDB, do large-scale content analysis,
etc.

The most glaring ommission in Stata is that as of yet it has no social network
analysis features. However you can integrate social networks by piping data to
one of the several scriptable programs that can do this (Pajek, several packages
in R, NWB, Mathematica), run the analysis in that package, and then import
the results back to Stata.9 Likewise, even for things that work in Stata, it
may be worth replicating in R or SAS if you take the Stolzenberg position
that software algorithm may produce flukes and so it’s a good idea to replicate
between packages.

Although Stata graphing has gotten very good beginning with Stata 10,
it still has limitations and so for some purposes (e.g., network graphs, heat
density plots) you might like to have another program (R, gnuplot, Pajek) do
the graphing for Stata. By using the “shell” command you can integrate these
graphs directly into your do-file. In the short run it would be faster to use
the graphic interface to do this (Excel can do almost any non-network graph)
but if you have to do it several times with slight changes each time, it’s better
to script it. Likewise, Stata has good eps graphs for all platforms but only
mediocre pdf graphs for mac and no pdf graphs at all for other platforms so I
wrote a command “graphexportpdf” that uses “shell” to pipe to the Ghostscript
command “ps2pdf” to translate the eps to a high-quality pdf.

9I have a Stata ado command for exporting Stata data to Pajek format and a perl script

for importing Pajek/NWB/Mathematica output back into Stata. For the former type “ssc

install stata2pajek” and for the latter get http://gabrielr.bol.ucla.edu/pajek_labelvector.pl

12

http://korflab.ucdavis.edu/Unix_and_Perl/index.html

Have a Nice Day

I like to end all of my scripts with the comment

*have a nice day

The reason is that Stata will only execute a command that has an end-of-line
character. This means that the very last line of the do-file is not executed. One
way to solve this is just to put a blank line at the bottom but it’s hard to tell
at a glance whether you remembered to do this. Hence, I put a silly phrase at
the end to ensure that the last real command gets executed.

13

